Stochastic integrals and stochastic differential equations with respect to the fractional Brownian field

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic integration with respect to the fractional Brownian motion

We develop a stochastic calculus for the fractional Brownian motion with Hurst parameter H > 2 using the techniques of the Malliavin calclulus. We establish estimates in Lp, maximal inequalities and a continuity criterion for the stochastic integral. Finally, we derive an Itô’s formula for integral processes.

متن کامل

Stochastic calculus with respect to fractional Brownian motion

— Fractional Brownian motion (fBm) is a centered selfsimilar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this conference we will survey some recent advances in the stochastic calculus with respect to fBm. In the particular case H = 1/2, the process is an ordinary Brownian motion, but otherwise it is not a semimartingale and Itô...

متن کامل

Volterra Equations with Fractional Stochastic Integrals

We assume that a probability space (Ω,η,P) is given, where Ω denotes the space C(R+, Rk) equipped with the topology of uniform convergence on compact sets, η the Borel σ-field of Ω, and P a probability measure on Ω. Let {Wt(ω) = ω(t), t ≥ 0} be a Wiener process. For any t ≥ 0, we define ηt = σ{ω(s); s < t}∨Z, where Z denotes the class of the elements in ηt which have zero P-measure. Pardoux and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theory of Probability and Mathematical Statistics

سال: 2008

ISSN: 0094-9000

DOI: 10.1090/s0094-9000-08-00717-5